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SOME APPROXIMATE METHODS OF SOLVING INTEGRAL EQUATIONS 
OF MIXED PROBLEMS* 

E.V. KOVALENKO 

Two algorithms are developed for investigating an integral equation (IE) 
that arises in the study of mixed problems of the mechanics of continuous 
media with boundary conditions specified on a circle. The first is a 
generalization of the orthogonal function method and relies on the 
approximate construction of the sequence of eigenvalues and a correspond- 
ing system of eigenfunctions of the integral operator of the original 
problem. It is shown that this approach is effective for any values of 
a certain non-dimensional parameter h~(O,m) of geometrical or physical 
origin,occurringinthekerneloftheintegralequation. The secondmethodis 

applicable for small h valuesandisbasedonKoiter'sideaofapproximate 
factorization. Its advantageisitsgreateraccuracycomparedwiththe 
previouslyusedmethod,whichinvolvedapproximationofthekernelofthe 
integral equation. As anexample,wepresentthe solutionofanaxisymmetric 
problem: theimpressionofastampintoanelastic half-space reinforced at 
the boundary by a thin cover. 

1. It is well-known /l, 2/ that a wide range of three-dimensional mixed problems in the 
mechanics of continuous media and mathematical physics, in which the boundary conditions are 
specified on a circle, reduce to a consideration of an integral equation of the form 

(1.1) 

k (p, a) = i K(u) ul, (u@ I, (ua) du (j-3 = + , a = ;) (1.2) 
0 

The kernel symbol K(G) has the following properties /3/: 1) it is an even function, 
K(u)> 0 (1~1 (co); 2) in the plane of the complex variable 5 = u + iv the function K(C) is 

regular inthe strip 1 u I< 00, I v ( <6 and continuous onthereal axis except for the point 
5 = 8; 3) K (6) satisfies the following asymptotic formulae on the real axis: 

K(n)-~~I-'(InI-+~), K(u)-BIuI-1 (u-+0) (1.3) 
Using (1.3) and the values of the integral /4/ 

s J, (up) 1, (ua) au = + K (4 2VE 
e=BS_a 

cl 

(1.4) 

where K (e) is the complete elliptic integral of the first kind, we infer from (1.2) that 

WW-y&j- K(e) (IP-al-+(X 

k (B, 4 -_KKe) (IS-al-+=) 

(1.5) 

It should be borne in mind that the integral Eqs.(l.l), (1.2) can be reduced by the 
"method of transforming operators" /5/ to an equivalent equation of the second kind: 
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C.6) 
-1 

w 

k(t)=~[L(u)-l]cosutdu, K(u)(uI=L(u) (1.7) 

Here 

1 

cp (r) = f * - 
{ s v (PI dP V 

r l/P%- r2 ) 

g(s) =,,o,+,r,~'* 
0 

Apart from the above properties of the kernel symbol K(c) in (1.2) or (1.71,weassume 
that the following formulae hold: 

L(u) = 1 + ,$ C&-n + 0 (u-N”) (u -+ CQ) (1.10) 
*=1 

IL(u)- 1 -+ - -$I< u*(u=+ b) (O,<u < 00: 6 b>O) (1.11) 

We then have the following representation /3/: 

k (t) = R, - cl In ) 1 I --‘i,nc, J t 1 -I- 2 (t) (R, = const) 

where 1 (G is a function whose first derivative satisfies a H&der condition for (t 1 <R< 
00,with exponent 1 - e>O (E>O), i.e., Z(~)E H:-e(-R, R). Hence it follows that (1.6) is a 

rredholm integral equation. 

We assert that if f’ (r) E L, (Q) (P > 2) (-& (8) is the space of functions summable in the 

disc Q: O<r,< 1 to power p), then g(z)EHol(--1,i). To prove this we clearly have to 

show that the integral (1.9) is bounded. We use the Holder inequality /6/ 

(VP f VI = 1) 

from which it follows that P>Z and so g (4 E H,'(--1, 1). 
It can be proved that if the right-hand side of (1.6), (1.7) is such that g (m) E H,’ 

(-1, I), then the solution of this integral equation has the following properties: 

$ (x) E H,’ (-1 + E, 1 - E), 11 (z) E Hi-’ (-1, -1 + E) (1.12) 

(I, (x) E Hi-’ (1 - E, 1) 

(E is a positive number as small as desired). 

Indeed, consider the integral 

(1.13) 

which is the principal part of the kernel (1.11) of Eq.cl.6). Since R (4 E H,'(-I, 1), and 

since (1.6) is a Fredholm equation of the second kind, the latter is solvable at least in 

the space of continuous functions C(--1,1) for almost all values of the parameter h E (0, =J) 
(it can be shown that the integral Eqs.(1.6) and (1.7) are solvable for all L=(O,m)). 

Differentiating both sides of (1.13) with respect to z and remembering that Q (4 E C 
f-i, IL we conclude /7/ that the function F(z) satisfies conditions (1.12). Since the right- 

hand side of Eq.cl.6) is a function of class A','(-i,1), it follows, comparing the properties 

of s(z) and F (4. that (1.12) is true. 

We will now examine the structure of the solution of the original integral Eqs.cl.1) and 

(1.2). We assert that if f’(r)= Lp(Q), then the function 'p (4 as defined in (1.8) may be 

expressed as 

cp (r) = 0 (r)ll/l - 9, 0 (r) E C (Q) (1.14) 
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To prove this, we study the properties of the integral in (1.8): 

(1.15) 

Note that in view of the properties of II,(r) established above, the function Y(p, r) in 

(1.15) exhibits the following asymptotic behaviour as p-+ r: 

Y((P, 

y (CA 

r) = Y (r, r) -I- 0 (p - r), Y (r, r) E C (Q*) (1.16) 

r) - (p - r)-E (p, r E 52 \ Q*) 

1~ E. Substituting (1.16) into the last integral of (1.15), _ where Q* is a disc of radius 

F(;)btain I (r) - Y (r, r) (r E W), I (r) - (1 - r)l-e (r E S1 \ L2*), whence it follows that Z (r) E 

, and so also 61 (r)E C(Q). We have thus proved the following 

Theorem. If f'(r)= L,(Q) (p > 2), then the integral Eq.(l.l) with kernel (1.2) and 

symbol K(u) satisfying conditions l- 3 is uniquely solvable in L, (a)(1 < q< 2) and its 

solution 'p(r) has the structure (1.14). Moreover, the solution satisfies the well-posedness 

relations 

II cp llLq < 01 (A) II f’ IILp’ II m IIC < e2 (h) II f’ llLp 

where 0, @) and e2 (h) are bounded constants for any fixed h . 

2. Before proceeding to construct a solution of the original integral Eqs.tl.1) and 

(1.2), we consider the properties of its kernel in more detail. Suppose that the kernel 

symbol satisfies conditions (1.3) and behaves asymptotically at infinity as in (1.10). Then, 

in view of the integrals (1.4) and /4/, 

- s Jo (pm) Jo (au) - P’Z 
u 

&=__l* Pi-y-l 
0 

we represent k(p, a) (see (1.2)) as 

where, as can be shown, m(p, a) is an at least continuously differentiable function of its 

arguments on the square O<a, p<co. 

Now, in accordance with the theorem, we consider the Hilbert space L:/l(Q) of functions 

which are square summable in the disc Q: 0 <r< 1 with weight (1 - r2)+ and look for the 

solution cp (r) of equations (1.1) and (1.2) in the form of (1.4), where 

(2.1) 

(2.2) 

The functions o,(r) in (2.2) are eigenfunctions of the operator 

i.e., non-trivial solutions of the homogeneous equation 

Am,= ~,,a,, (O<r<l) (2.4) 

Note that in accordance with the representation (2.1) and the symmetry of the kernel 

(1.2) in 9, the system of eigenfunctions {an(r)) is orthonormal and complete in Lz'l* (Q), 
and the series (2.2) converges in the norm of the space L;'l (S-2); moreover, {d,}E 2,. 

We now expand the function f (4 in a Fourier series, uniformly convergent in Q&in 
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terms of the system {o,,(r)}: 

Substituting (2.2) and (2.5) into (l.l), using (2.4) and equating coefficients of corre- 
sponding eigenvalues on the right and left of the resulting equation, we obtain 

cs, = f&&-r (n = 1, 2, 3, 1 . .) (2.6) 

and so we finally write the solution of Eqs.(l.l) and (1.2) in the form (1.14), (2.2), (2.6), 
on the assumption that the real eigenvalues &I) and corresponding eigenfunctions C% (rff 
of the operator Aw are given. 

That (2.6) is legitimate follows from the fact that the operator (2.3) is positive 
definite. 

Indeed, consider the scalar product 

(2.71 

Thanks to the asymptotic properties of l,(u) = K(u)lu[ (1.3) and the Parseval equality for 
the Hankel transform, the integral on the right of the first relation in (2.7) is convergent. 

Since L(a)70 on the real axis O<=<<, it follows that 

(Am. o)~,,~ = ~(0. o),%,,>O (y = con@ 
9: 2 

and hence the operator (2.3) is positive definite. Then /6/ O<p<.. _ <p~n<...<p~<p~. and 
this justifies (2.6). 

We will now determine the eigenfunctions of the operator Aoor, what is the same, the 
solution ofthehomogeneous integral Eq.(2.4). To that end we can use, for example, the Ritz 
method /El, 9/, As a sequence of coordinate elements we take the system of Legendre polynomials 

{P,,* (v'l - rz)l : 

(2.8) 

It is well-known /6/ that this system is a basis in Lb'* (8). We substitute (2.8) into 
(2.4) and then take the scalar product of both sides of the resulting expression with p,b* 

(dl - 9). ID view of the orthonormality of the polynomials P&,(1/1- r2), we obtain 

Using the values of the integral /4/ (u>O) 

1 .- 

s 
0 
f, (ur) P,,, (1’1 - r*) --$+ = j/ -$ d2n+‘lr (U) 

a n = (32 - 1)1! l(2n)lI 

we can write the coefficients Ckm as 

(2.9) 

(2.10) 

For system (2.9) and (2.10) to have a non-trivial solution, its determinant must vanish. 
Equating the determinant to zero, we obtain an equation for the first N eigenvalues II,, of the 
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operator (2.3). Once p,, have been determined, we can find b,,,@‘), expressing them in terms of 

(2.12) 

In view of (2.8), we obtain 

The constants 
functions mnN (r), 

After finding boW from (2.14), we determine approximations of the required eigenfunc- 
tions of the operator AU. In so doing we use the fact that, thanks tothepreviouslyindicated 
properties of the operator (2.31, the Ritz process for the integral Eq.(2.4) will converge /8/, 
i.e., anN (r) + co,, (r) (N + co). In addition, by formulae (1.5) and the spectral formula /lo/ 

oz (r) = br’$$ (r), $? (r) = mf,4h%‘Pb (1/1-‘8) 

b,@) (n > 1) in (2.12), (2.13) are determined by 
i.e., 

(2.13) 

normalizing the eigen- 

(2.14) 

the coefficients Ckm given by (2.11) exhibit the following asymptotic behaviour: 

Ckm - '/anakS6k, (a- ==), ck,,,-r/gnBaka&m (h+O) 

@km is the Kronecker delta), which implies that as h-too or h-+0 the matrix of the 
system (2.9) becomes diagonal. 

3. We will now present an algorithm for investigating integral Eqs.cl.1) and (1.2), 
which is effective for small h values. Using a formula due to Krein /II/, we consider Eqs. 
(1.6) and (1.7): 

S .rp(f)k(FJ@=nhg (Izl<l, g=f(O)=const) (3.1) 
-1 

k(t) =~L(u)cosutdu (3.2) 
cl 

With an eye to solving integral Eq.(3.1) for h<l by Koiter's approximate factoris- 
ationmethod/l2/, we use formulae (1.31, (1.10) to approximate the kernel symbol K(c) 15 1 = 

L (5) as follows: 

L (Cl = L* (5) (E --+ 0, B = h,*h;*) 

We will seek the principal term of the asymptotic expansion of the solution to an integral 
Eq.(3.1) with kernel (3.2), (3.3) in the following form /3/: 

where 0 (s) satisfies the Wiener-Hopf integral equation, whose solution is /3/ 

(3.4) 

(3.5) 

Here the contour r is a straight line just above the real axis in the plane of the 
complex variable c = u -I- iv, and L, (TJ=L+(6)L_(6), where the functions L+(c) and L_(c) 
are regular in the half-planes Im 6> - a, Im c<E, respectively, have no zeros there and 
can be written as /13/ 
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(3.6) 

1t follows from 13.6) that 

L_ (0) = L, (0) = 1/T (3.7) 

We will now substitute (3.7) into (3.5) and for convenience express the latter in terms 

of the Laplace-Carson transform rather than the integral Fourier transform, by substituting 
5 = ip. By (3.61, we obtain 

where L is a straight line just to the right of the imaginary axis in the plane of the complex 

variable p, and we have used the notation 

Now, transforming the expression for p(p) with the help of the third formula of (3.9), 
we find that 

ir (~1 [m (P" - h,2fl-'p In (@,-'I (3.10) 

Note that the function exp I-&p b)l may be approximated in the half-plane Rep>O, to a 
high degree of accuracy by the expression /14/ 

exp [--hIp( = 1 - ~~~(~) (3.11) 

The error in this approximation over the positive real axis, for example /13/, is at most 1% 

for the k, and k, values specified in Sect.4. 

Substituting (3.9)-(3.11) into (3.8) and using tables /15/, we obtain (Ei(z) is the 

integral error function) 

Thus the solution of the integral Eqs.(l.l) and (1.2) for ?b<l can be written as (1.8), 

(3.4) and (3.12). 

4. As an example, let us consider an axisymmetric contact problem, in which a stamp of 

circular plan (O<r<d) and flat base is impressed without friction into an elastic (G v*) 
half-space whose surface is reinforced by a cover plate /16, I?/: 

fG,hi\u* = -(i - It,)@ f- T_) - 0.5v,h (G+' + e-') (4.1) 

CJ+ - CT_ = - $ [r (r+f T_)]‘. 
1 d 

A = $ + T ;i; - f 

Here G,, v1 are the elastic constants of the cover material, h its thickness, and e*(r) and 

T* (3 the normal and tangential stresses acting on the upper and lower faces of the cover. 
The problem is to determine the distribution law of the contact pressures 4 (47 as well 

as the relationship between the depression 6 of the base and the force exerted on the stamp 

P =2x rg(r)dr 
! 
0 

(4.2.f 

Using a Hankel integral tansformation with respect to r, one can reduce this problem to 
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determining a (T) from an integral equation of the first kind. Introducing non-dimensional 
variables p' = pa-1 , r* = ra-1 and the notation m(r*) = q(r)@%- , 1 N, = P (al&)-‘, f (r*) = f (1 - Ed*)-’ = g, f = 

6a-‘, c2 = 0.5 (1 - &,)(I - v&l, 8> = G,(1 - ~$1, h = %hna-*, n = 6&-’ (the asterisk will be omitted 

henceforth), we can express the integral equation in question in the form of (l.l), with the 
function k(&ot) given by formula (1.2) in which g(u) is 

,(,)=U+(l-Ee,a)-‘, B= 1 
u (u + 1) 1 - 62 

(4.:X) 

The following observation is important. Asymptotic analysis of the contact problem of 
the impression of a stamp into a two-layer base /la/ has established that if the relative 
thickness of the cover ha-' is small but its relative stiffness n is large, where n-l= O(ha-l) 
(ha-' - O), then its physico-mechanical properties may be described up to 0 (ha-‘\ terms by the 
equations of the cover (4.1). 

In order to obtain numerical results for the original problem for small h values, i.e., 
to use the formulae of Sect.3, we must specify the values of the constants hi (1 = 1. 2, 3, 4) in 
(3.3) * For example, for ~,=0.3 in (4.3) we set h, = ---0.09796, h, = 1.0954, h, = 3.9044, h, = 3.7417. 
In that case the error incurred by using (3.3) to approximate the kernel symbol fc(~) of 
(4.3) is at most 1% over the whole real axis. 

h 1 r-0 1 0.2 ) 0.4 1 0.6 1 0.8 ( 0.95 11 S,f_' 

0.656 ( 0.640 1 0.051 1 0.781 1 1.017 

The table shows the values of the contact pressures rc (r)f_' and force SJ1 (4.2) on 
the stamp, calculated by the methods of Sect.2 (the first row) and Sect.3 (the second row). 
The solution (2.2) was considered up to the first seven eigenfunctions of &J, and the error 
of the approximate solution does not exceed 1.5% for any parameter values n~(O,m). It is 
obvious that as the relative stiffness or relative thickness of the cover increases, there is 
an increase in the contact pressures and the force on the stamp, the latter varying within 
the limits NJ' = 3.67 (as h - 0) and *V&-I = 4 (as h-m) /19/. Hence it follows that 
failure to allow for the influence of a thin reinforcing cover may lead to an error in 
determining the contact stiffness of a composite base, amounting to 9% for VP = 0.3. 
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The author is indebted to V.M. Aleksandrov for his interest and advice. 
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A NEW APPROACH TO THE ASYMPTOTIC INTEGRATION OF THE EQUATIONS OF 
SHALLOW CONVEX SHELL THEORY IN THE POST-CRITICAL STAGE* 

A.YU. EVKIN 

A method is proposed for the asymptotic integration of the non-linear 
equations of shallow elastic shell theory on the basis of a new definition 
of the small parameter that is selected to be proportional to the ratio 
between the shell thickness and the amplitude of its deflection. This 
parameter is actually small if the shell is in the post-critical stage, 
i.e., its deflections are large. An asymptotic expansion of the solution 
of the shell equilibrium equations in the parameter mentioned is carried 
out. It is established that the first two approximations result in the 
geometric theory of shell stability formulated by Pogorelov /l/. By 
comparing the asymptotic and numerical solutions /2f found for a spherical 
shell under axisymmetric deformation, satisfactory accuracy of the 
proposed method is obtained for fairly large deflection. The well-known 
Koiter approach is used in the small-deflection domain. The two asymptotic 
expansions, one of which is suitable for small deflections and the other 
for large, are merged using the Pad; approximation. 

Despite the efficiency of the well-known asymptotic method c/3-5/, etc.1 in non-linear 
shell theory, the singularities of the non-linear equations describing the behaviour of the 
shell for deflections substantially exceeding its thickness are. not used therein. The signifi- 
cant post,-criticalshelldeformations are described well in a number of cases by the Pogorelov 
/l/ geometric theory which is, however, phenomenological in nature. The investigations in 
/3-7/ are devoted to proving the geometrical method. The paper by Lesnichaya /7/ should be 
noted, in which the ratio between the shell thickness and the characteristic dimension of the 
domain of the post-critical dents is utilized as the small parameter in a study of the axisym- 
metric deformation of a closed sphere under uniform external pressure. Relationships of the 
geometrical theory are obtained as the fundamental approximation. However, the connection 
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